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91405-0rsay, France 
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Abstract. Three models of nongaussian stationary light are studied in which the clipped 
photocount autocorrelation formulae at zero photon number are not simply connected to 
the unclipped autocorrelation intensity function of the light field. 

1. Introduction 

In recent years several methods of measuring correlation functions of fluctuating light 
fields have been developed : correlation (Hanbury Brown and Twiss 1957), coincidence 
(Morgan and Mandel 1966), time-to-amplitude converter (Scar1 1968) techniques and 
photon-counting methods (Arecchi et a1 1966, Meltzer and Mandel 1970). More 
recently Jakeman and Pike (1969) have developed theoretically, and then experimentally 
(Foord et al 1970), a new digital correlation method based on properties of clipped 
photon-counting fluctuations of gaussian light (VanVleck and Middleton 1966). The 
procedure of clipping has, of course, a great experimental advantage due to the fact that 
clipping allows the use of a simple electronic circuit, but the theoretical relations 
connecting the clipped and unclipped autocorrelation functions are generally complicated 
except in the particular case of a gaussian optical field for which many properties and 
results are known (Jakeman and Pike 1969). However, it is well known that in some 
experimental situations (Jakeman et a1 1970, Picinbono and Rousseau 1970, Schaeffer 
and Pusey 1972) optical fields of nongaussian nature are present and it becomes very 
interesting to study the exact theoretical expressions of the autocorrelation functions 
which are measured in the clipped photocount experiments. 

The main object of this paper is, therefore, to extend the clipped photocount auto- 
correlation formulae at zero photon number to three very simple models of nongaussian 
optical fields. First, the fundamental formulae of the clipping technique are briefly 
summarized and then these basic results are applied to sinusoidal and gaussian modula- 
tion of the ideal laser light and also to gaussian modulation of thermal light. 

2. Fundamental formulae 

We briefly recall some fundamental results concerning the clipping technique which have 
been extensively studied by Jakeman and Pike. For single clipping the appropriate 
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correlation function go(r)  takes the form 

where 

no(t) = 1 if n(t) > 0 

no(t)  = 0 if n(t)  = 0. 

Here n(t) is the number of photoelectrons detected during the time interval T centred 
about t (very small compared with the coherence time T~ of the field) and (n) is the mean 
number of photoelectrons. In equation (l), p(n,  m) means the joint photon-counting 
distribution and may be defined as follows : 

(-1)”’“‘ d“ d” 
SI = s 2 =  1 

Q(sl , p ( n ,  m) = ~ - - 
n!m!  ds; d$ 

with Q(sl ,  s2), the two-dimensional generating function of the intensity l ( t ) ,  given by 

Q(sl, s2) = (exp( - ~ l W W - s 2 ~ ( 4 ~ ) > .  (3) 

The one-dimensional density probability p(n)  that n photoelectrons are registered in a 
Here 7 is the time delay (arbitrary compared with the coherence time T J  

time interval 7’ is given by Mandel’s formula (Mandel 1958) 

where p ( l )  is the probability distribution of the light intensity l ( t )  and a is the quantum 
efficiency of the detector. One can show (Jakeman and Pike 1969) that equation (1) 
may be written as : 

Then, after a little calculation, one obtains 

1 - 4(0,T) 
1 - P(0) 

g o ( 4  = 

where 

q(n, T )  is called the ‘delayed-triggered’ photocounting distribution (Picinbono and 
Rousseau 1970) and ( I )  means the average value of the intensity Z(t). Consider now the 
formula similar to (5) in the two-channel clipping case. The relevant expression is 

So that, we find 
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which, after a little manipulation, takes the following form : 

1 - M O )  + P ( 0 , O )  
(1 - P(W2 g o o ( 4  = 

3. Applications 

We consider here three kinds of light that can be obtained by modulating cw gas laser 
light or pseudothermal light. The modulator might consist of an electro-optic KDP 
crystal mounted between crossed polarizers and with an appropriate applied sinusoidal 
or noise voltage. It is well known that the fraction of incident light intensity I ,  which is 
transmitted by an electro-optic light modulator at an arbitrary voltage V(t) can be 
written as (Yariv 1968) 

or 

I ( t )  = I ,  sin2bV(t) 

where V, is the characteristic voltage of the crystal modulator and b = n/2VO. Moreover 
if V << V,, we obtain 

I ( t )  = ul ,b .2( t )  (13) 

where a = T C ~ : ’ ~ V ~  is a constant 

3.1. Sinusoidal modulation oj’ laser light 

We describe the instantaneous intensity I ( t )  by the expression 

I ( t )  = 2 ( 1 )  sin2(ot + 4). 
4 is the random phase with 

and 

T I 2  I ,  
( I )  = - - 

8 V i ’  
Using Mandel’s formula (equation (4)) with 

p ( 1 )  = - - 
1 1  1 

271 JTJ” 
it can be shown that 
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Using the definition (equation (7)) of q(n, 7), we then obtain 

q(n, 7) = 2(sin20t)p(n)+-(cos 2wt)p(n + I), (17) 
n + l  
(U) 

so h a t ,  for go(7) given by equation (6)  

g,(7) = (1 -e-(n)Io((n)))-l[l -e-(") '  11,((n>)-(cos 2 ~W(~))H. (18) 
I,(x) and I,(x) are the zero-order and the first-order Bessel functions of the first kind 
and ( n )  is the mean value of n. 

Likewise, considering the double-clipping formula and taking the I(t) described by 
equations (14)-(15), we easily find 

Now, let T,(7) be the normalized unclipped autocorrelation function of l(t). The 
straightforward application of equation (1 1) gives 

(20) 

With a brief examination of equations (1 8) and (19), we can conclude that these expressions 
are not very closely related to (20). 

However, it can be seen that the expected limits for ( n )  -+ 0 of (18) and (19) are 

(I(t)l(t - 7)) = 1 ++ cos 20*, 
(02 = 

3.2. Gaus-;an modulation of laser light 

The basic results for a 'real gaussian' field from the real, stationary and gaussian amplitude 
model of Picinbono (Picinbono and Rousseau 1970) may be summarized as follows: 

I ( t )  = l o V 2 ( t )  (21) 
where V(t) is the modulation voltage with gaussian distribution 

ov is the variance of V(t) and I ,  is a constant. Thus, with 

1 
= J- 2rcl (I) erp ( -&) 

and with the aid of equation (4), one obtains 

We can extend these for our appropriate calculations and we easily find 
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(26) 

where rJ7)  is the normalized autocorrelation function of V(t ) .  For ;-*e double clipping 
formula, we obtain 

On the other hand, the unclipped normalized autocorrelation function of the intensity 
l ( t )  is easily derived from equation (21). So we have 

r,(7) = 1 +2r:(7). (28) 
The fundamental relation is, obviously, preserved in the limit 

3.3. Gaussian modulation of’ thermal light 

Let us now consider the intensity 

I ( t )  = j(t)v2(t) (29) 
where j ( t )  is a thermal intensity and V ( t )  is a gaussian modulation with a distribution 
given by equation (22). 

From (29), we can easily deduce the normalized unclipped autocorrelation function 
of l ( t )  

(30) 
where y z ( 7 )  is the normalized autocorrelation function of the thermal field and ry(7) is 
the normalized autocorrelation function of V(t) .  

Using the expressions for p(Z) and p(n) given by (Bendjaballah and Perrot 1971), 
we firstly obtain for the single-clipping case 

r,(T) = (1 + I Y ~ ( ~ ) I ’ ) ( ~  +2r:(t)) 

where WA,p means WA,,(1/2(n>) which is the Whittaker function. 
To study equation (10) in the present case, we need the expression for p(n,  m) which 

presents some difficulties. To simplify the calculations, we first examine the case where 
r v ( T )  = 1 which represents the most usual experimental situation (the fluctuations of 
V(t )  are much slower than the optical field fluctuations). Then we have 
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where DA(x) is the parabolic cylinder function (see for example Gradshteyn and Ryzhik 
1965, p 1064). The expression for p(0 ,O)  needed before we can use equation (10) is 
established in Bendjaballah (1972). It is 

Thus we can evaluate the full expression for goo(7) in (10). 

and W,,,(x) (x --f x) (see Gradshteyn and Ryzhik 1965, p 1061) 
Therefore, if we consider the case ( n )  0 and use the asymptotic form for D,(x)  

p(0) - 1 - ( n )  + 3(n)2  

p(0 ,O)  - 1 -2(n)+3(n)2(3+lY,(s)12), 

we obtain 

lim go(?) = T,(7) 
<n) -O 

and 

If we use the assumption yz(s) = 1, rather than r y ( t )  = 1, we obtain 

4. Discussion 

In the three models of the light field considered above, the calculations show that the 
relations which determine the autocorrelation function of the light intensity from single- 
and double-clipped formulae are generally not simply related. We reach that conclusion 
by comparing equations (18), (19) with (20), equations (26), (27) with (28) and equations 
(31), (32), (33), associated with (lo), with expression (30). 

Of course, the object of clipped experiments is not to give the T,(7) autocorrelation 
function of the light intensity directly but to lead to the exact autocorrelation function 
of the light intensity with simple operation and good accuracy. It is proved here that 
in order to deduce I‘,(r) from clipped measurements, ofie must study, in some cases, the 
statistical nature of the light. However, it has been very recently shown (Jakeman et al 
1972) that the so called ‘scaling-clipping’ method provides, with good approximation, 
the exact intensity correlation function, regardless of light statistics. 

Generalization of the above calculations will be considered in a future work. 
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